

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: d pond 7p infilttration basin

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable

	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	
5.35 ac	A = Area draining to the practice	
0.11 ac	$A_{\rm I}$ = Impervious area draining to the practice	
0.02 decimal	I = percent impervious area draining to the practice, in decimal form	
0.07 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.37 ac-in	WQV= 1" x Rv x A	
1,340 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
335 cf	25% x WQV (check calc for sediment forebay volume)	
	Method of pretreatment? (not required for clean or roof runoff)	
cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
cf	V = volume ¹ (attach a stage-storage table)	$\leftarrow \geq WQV$
sf	A_{SA} = surface area of the bottom of the pond	
iph	$Ksat_{DESIGN} = design infiltration rate2$	
- hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u>≤</u> 72-hrs
295.10 feet	E_{BTM} = elevation of the bottom of the basin	
293.88 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the to	est pit)
294.00 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the	test pit)
1.23 feet	D_{SHWT} = separation from SHWT	← ≥ * ³
1.1 feet	D_{ROCK} = separation from bedrock	← ≥ * ³
na ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	← ≥ 24"
na ft	D_T = depth of trench, if trench proposed	← 4 - 10 ft
Yes/No	If a trench or underground system is proposed, observation well provided ⁴	
na	If a trench is proposed, material in trench	
pea gravel	If a basin is proposed, basin floor material	
yes Yes/No	If a basin is proposed, the perimeter should be curvilinear, basin floor shall be	flat.
2.0 :1	If a basin is proposed, pond side slopes	← ≥3:1
297.27 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
298.47 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
299.50 ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)
YES	10 peak elevation \leq Elevation of the top of the trench? ⁵	← yes
YES	If a basin is proposed, 50-year peak elevation ≤ Elevation of berm?	← yes

- 1. Volume below the lowest invert of the outlet structure and excludes forebay volume
- 2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate
- 3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.
- 4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.
- 5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:			

NHDES Alteration of Terrain Last Revised: March